Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 4 - Section 4.1 - Maximum and Minimum Values - 4.1 Exercises - Page 287: 48

Answer

$u = \pm \sqrt 3 $

Work Step by Step

$$\eqalign{ & B\left( u \right) = 4{\tan ^{ - 1}}u - u \cr & {\text{The domain of the function is }}\left( { - \infty ,\infty } \right) \cr & {\text{Differentiate with respect to }}u \cr & B'\left( u \right) = \frac{d}{{du}}\left[ {4{{\tan }^{ - 1}}u - u} \right] \cr & B'\left( u \right) = 4\left( {\frac{1}{{{u^2} + 1}}} \right) - 1 \cr & B'\left( u \right) = \frac{4}{{{u^2} + 1}} - 1 \cr & B'\left( u \right) = \frac{{4 - {u^2} - 1}}{{{u^2} + 1}} \cr & B'\left( u \right) = \frac{{3 - {u^2}}}{{{u^2} + 1}} \cr & {\text{The derivative }}B'\left( u \right){\text{ exists for all real number }}u,{\text{ then}} \cr & {\text{the critical numbers occur when }}B'\left( u \right) = 0 \cr & \frac{{3 - {u^2}}}{{{u^2} + 1}} = 0 \cr & 3 - {u^2} = 0 \cr & - {u^2} = - 3 \cr & {u^2} = 3 \cr & u = \pm \sqrt 3 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.