Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 4 - Section 4.1 - Maximum and Minimum Values - 4.1 Exercises - Page 287: 30

Answer

$v = - 2{\text{ and }}v = 2$

Work Step by Step

$$\eqalign{ & g\left( v \right) = {v^3} - 12v + 4 \cr & {\text{Differentiate the given function}} \cr & g'\left( v \right) = \frac{d}{{dv}}\left[ {{v^3} - 12v + 4} \right] \cr & g'\left( v \right) = \frac{d}{{dv}}\left[ {{v^3}} \right] - \frac{d}{{dv}}\left[ {12v} \right] + \frac{d}{{dv}}\left[ 4 \right] \cr & {\text{Recall that }}\frac{d}{{dx}}\left[ {{x^n}} \right] = n{x^{n - 1}},{\text{ and }}\frac{d}{{dx}}\left[ c \right] = 0 \cr & g'\left( v \right) = 3{v^2} - 12 + 0 \cr & g'\left( v \right) = 3{v^2} - 12 \cr & {\text{The domain of }}g'\left( v \right){\text{ is }}\left( { - \infty ,\infty } \right),{\text{ }}g'\left( v \right){\text{ exists for all }}v,{\text{ then}} \cr & {\text{the critical numbers occur when }}g'\left( v \right) = 0 \cr & 3{v^2} - 12 = 0 \cr & {\text{Factoring}} \cr & 3\left( {{v^2} - 4} \right) = 0 \cr & 3\left( {v + 2} \right)\left( {v - 2} \right) = 0 \cr & {\text{Zero - factor property}} \cr & v + 2 = 0,{\text{ }}v - 2 = 0 \cr & v = - 2{\text{ and }}v = 2 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.