Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 4 - Section 4.1 - Maximum and Minimum Values - 4.1 Exercises - Page 287: 29

Answer

$x = - \frac{1}{6}$

Work Step by Step

$$\eqalign{ & f\left( x \right) = 3{x^2} + x - 2 \cr & {\text{Differentiate the given function}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {3{x^2} + x - 2} \right] \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {3{x^2}} \right] + \frac{d}{{dx}}\left[ x \right] - \frac{d}{{dx}}\left[ 2 \right] \cr & {\text{Recall that }}\frac{d}{{dx}}\left[ {{x^n}} \right] = n{x^{n - 1}}{\text{ and }}\frac{d}{{dx}}\left[ c \right] = 0 \cr & f'\left( x \right) = 6x + 1 - 0 \cr & f'\left( x \right) = 6x + 1 \cr & {\text{The domain of }}f'\left( x \right){\text{ is }}\left( { - \infty ,\infty } \right),{\text{ }}f'\left( x \right){\text{ exists for all }}x,{\text{ then}} \cr & {\text{the critical numbers occur when }}f'\left( x \right) = 0 \cr & 6x + 1 = 0 \cr & {\text{Solve for }}x \cr & 6x = - 1 \cr & x = - \frac{1}{6} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.