Answer
$x = \frac{1}{{\sqrt e }}$
Work Step by Step
$$\eqalign{
& g\left( x \right) = {x^2}\ln x \cr
& {\text{The domain of the function is }}\left( {0,\infty } \right) \cr
& {\text{Differentiate with respect to }}x \cr
& f'\left( x \right) = \frac{d}{{dx}}\left[ {{x^2}\ln x} \right] \cr
& {\text{Using the product rule for derivatives}} \cr
& f'\left( x \right) = {x^2}\frac{d}{{dx}}\left[ {\ln x} \right] + \ln x\frac{d}{{dx}}\left[ {{x^2}} \right] \cr
& {\text{Computing derivatives and simplify}} \cr
& f'\left( x \right) = {x^2}\left( {\frac{1}{x}} \right) + \ln x\left( {2x} \right) \cr
& f'\left( x \right) = x + 2x\ln x \cr
& {\text{Factoring}} \cr
& f'\left( x \right) = x\left( {1 + 2\ln x} \right) \cr
& {\text{The derivative does not exist for }}x \leq 0 \cr
& {\text{Find the values of }}x{\text{ where }}f'\left( x \right) = 0 \cr
& x\left( {1 + 2\ln x} \right) = 0 \cr
& x = 0, \cr
& or \cr
& 1 + 2\ln x = 0 \cr
& \ln x = - \frac{1}{2} \cr
& x = {e^{ - 1/2}} \cr
& x = \frac{1}{{\sqrt e }} \cr
& x = 0{\text{ is not in the domain of the function}}{\text{, so the only }} \cr
& {\text{critical point is}} \cr
& x = \frac{1}{{\sqrt e }} \cr} $$