Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 14 - Section 14.3 - Partial Derivatives - 14.3 Exercise - Page 970: 16

Answer

${g_x}\left( {x,y} \right) = 3\left( {2x + y} \right){\left( {{x^2} + xy} \right)^2}{\text{ and }}{g_y}\left( {x,y} \right) = 3x{\left( {{x^2} + xy} \right)^2}$

Work Step by Step

$$\eqalign{ & g\left( {x,y} \right) = {\left( {{x^2} + xy} \right)^3} \cr & {\text{Differentiate with respect to }}x \cr & {g_x}\left( {x,y} \right) = \frac{\partial }{{\partial x}}\left[ {{{\left( {{x^2} + xy} \right)}^3}} \right] \cr & {\text{Using the Chain Rule}} \cr & {g_x}\left( {x,y} \right) = 3{\left( {{x^2} + xy} \right)^2}\frac{\partial }{{\partial x}}\left[ {{x^2} + xy} \right] \cr & {\text{Considering }}y{\text{ as a constant}} \cr & {g_x}\left( {x,y} \right) = 3{\left( {{x^2} + xy} \right)^2}\left( {2x + y} \right) \cr & {g_x}\left( {x,y} \right) = 3\left( {2x + y} \right){\left( {{x^2} + xy} \right)^2} \cr & \cr & {\text{Differentiate with respect to }}y \cr & {g_y}\left( {x,y} \right) = \frac{\partial }{{\partial y}}\left[ {{{\left( {{x^2} + xy} \right)}^3}} \right] \cr & {\text{Using the Chain Rule}} \cr & {g_y}\left( {x,y} \right) = 3{\left( {{x^2} + xy} \right)^2}\frac{\partial }{{\partial y}}\left[ {{x^2} + xy} \right] \cr & {\text{Considering }}x{\text{ as a constant}} \cr & {g_y}\left( {x,y} \right) = 3{\left( {{x^2} + xy} \right)^2}\left( {0 + x} \right) \cr & {g_y}\left( {x,y} \right) = 3x{\left( {{x^2} + xy} \right)^2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.