Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 14 - Section 14.3 - Partial Derivatives - 14.3 Exercise - Page 970: 11

Answer

${g_x}\left( {x,y} \right) = 3{x^2}\sin y{\text{ and }}{g_y}\left( {x,y} \right) = {x^3}\cos y$

Work Step by Step

$$\eqalign{ & g\left( {x,y} \right) = {x^3}\sin y \cr & {\text{Differentiate with respect to }}x \cr & {g_x}\left( {x,y} \right) = \frac{\partial }{{\partial x}}\left[ {{x^3}\sin y} \right] \cr & {\text{Considering }}y{\text{ as a constant}} \cr & {g_x}\left( {x,y} \right) = \sin y\frac{\partial }{{\partial x}}\left[ {{x^3}} \right] \cr & {\text{Differentiating}} \cr & {g_x}\left( {x,y} \right) = \sin y\left( {3{x^2}} \right) \cr & {g_x}\left( {x,y} \right) = 3{x^2}\sin y \cr & \cr & {\text{Differentiate with respect to }}y \cr & {g_y}\left( {x,y} \right) = \frac{\partial }{{\partial y}}\left[ {{x^3}\sin y} \right] \cr & {\text{Considering }}x{\text{ as a constant}} \cr & {g_y}\left( {x,y} \right) = {x^3}\frac{\partial }{{\partial x}}\left[ {\sin y} \right] \cr & {\text{Differentiating}} \cr & {g_y}\left( {x,y} \right) = {x^3}\left( {\cos y} \right) \cr & {g_y}\left( {x,y} \right) = {x^3}\cos y \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.