Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 14 - Section 14.2 - Limits and Continuity - 14.2 Exercise - Page 960: 22

Answer

$\frac{1}{4}$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {1,2} \right)} \frac{{2x - y}}{{4{x^2} - {y^2}}} \cr & {\text{Evaluating the limit by direct substitution}}{\text{.}} \cr & \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {1,2} \right)} \frac{{2x - y}}{{4{x^2} - {y^2}}} = \frac{{2\left( 1 \right) - \left( 2 \right)}}{{4{{\left( 1 \right)}^2} - {{\left( 2 \right)}^2}}} = \frac{0}{0} \cr & {\text{Factoring the difference of two squares}} \cr & \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {1,2} \right)} \frac{{2x - y}}{{4{x^2} - {y^2}}} = \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {1,2} \right)} \frac{{2x - y}}{{\left( {2x + y} \right)\left( {2x - y} \right)}} \cr & = \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {1,2} \right)} \frac{1}{{2x + y}} \cr & {\text{Evaluating}} \cr & \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {1,2} \right)} \frac{1}{{2x + y}} = \frac{1}{{2\left( 1 \right) + 2}} = \frac{1}{4} \cr & {\text{Therefore}} \cr & \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {1,2} \right)} \frac{{2x - y}}{{4{x^2} - {y^2}}} = \frac{1}{4} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.