Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 14 - Section 14.2 - Limits and Continuity - 14.2 Exercise - Page 960: 11

Answer

$ - \frac{1}{2}$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {1,1} \right)} \left( {\frac{{{x^2}{y^3} - {x^3}{y^2}}}{{{x^2} - {y^2}}}} \right) \cr & {\text{Evaluating the limit by direct substitution}}{\text{.}} \cr & {\text{Substitute 1 for }}x{\text{ and }}1{\text{ for }}y \cr & \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {1,1} \right)} \left( {\frac{{{x^2}{y^3} - {x^3}{y^2}}}{{{x^2} - {y^2}}}} \right) = \frac{{{{\left( 1 \right)}^2}{{\left( 1 \right)}^3} - {{\left( 1 \right)}^3}{{\left( 1 \right)}^2}}}{{{{\left( 1 \right)}^2} - {{\left( 1 \right)}^2}}} = \frac{0}{0} \cr & {\text{Factoring the numerator and denominator of }}f\left( {x,y} \right) \cr & \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {1,1} \right)} \left( {\frac{{{x^2}{y^3} - {x^3}{y^2}}}{{{x^2} - {y^2}}}} \right) = \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {1,1} \right)} \left( {\frac{{{x^2}{y^2}\left( {y - x} \right)}}{{\left( {x + y} \right)\left( {x - y} \right)}}} \right) \cr & = - \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {1,1} \right)} \left( {\frac{{{x^2}{y^2}\left( {y - x} \right)}}{{\left( {x + y} \right)\left( {y - x} \right)}}} \right) \cr & {\text{Cancel the common factor }}y - x \cr & = - \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {1,1} \right)} \left( {\frac{{{x^2}{y^2}}}{{x + y}}} \right) \cr & {\text{Evaluating the limit by direct substitution}}{\text{.}} \cr & = - \frac{{{{\left( 1 \right)}^2}{{\left( 1 \right)}^2}}}{{\left( 1 \right) + 1}} \cr & = - \frac{1}{2} \cr & {\text{Therefore}}{\text{,}} \cr & \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {1,1} \right)} \left( {\frac{{{x^2}{y^3} - {x^3}{y^2}}}{{{x^2} - {y^2}}}} \right) = - \frac{1}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.