Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 14 - Section 14.2 - Limits and Continuity - 14.2 Exercise - Page 960: 20

Answer

${e^{\frac{\pi }{2}}}$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {\pi ,1/2} \right)} {e^{xy}}\sin xy \cr & {\text{Evaluating the limit by direct substitution}}{\text{.}} \cr & {\text{Substitute }}\pi {\text{ for }}x{\text{ and }}\frac{1}{2}{\text{ for }}y \cr & \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {\pi ,1/2} \right)} {e^{xy}}\sin xy = {e^{\left( \pi \right)\left( {\frac{1}{2}} \right)}}\sin \left[ {\left( \pi \right)\left( {\frac{1}{2}} \right)} \right] \cr & {\text{Simplifying}} \cr & \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {\pi ,1/2} \right)} {e^{xy}}\sin xy = {e^{\frac{\pi }{2}}}\sin \left( {\frac{\pi }{2}} \right) \cr & \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {\pi ,1/2} \right)} {e^{xy}}\sin xy = {e^{\frac{\pi }{2}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.