Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 11 - Section 11.1 - Sequences - 11.1 Exercises - Page 735: 6

Answer

$\frac{4}{5},\frac{15}{17},\frac{12}{13},\frac{35}{37},\frac{24}{25}$

Work Step by Step

$a_{n}=\frac{n^{2}-1}{n^{2}+1}$ for $n\geq 3$ Rewrite the formula: $a_n=\dfrac{(n+2)^2-1}{(n+2)^2+1}$ for $n\geq 1$ Substitute $1,2,3,4,5$ to $n$: $a_{1}=\frac{3^{2}-1}{3^{2}+1}=\frac{8}{10}=\frac{4}{5}$ $a_{2}=\frac{4^{2}-1}{4^{2}+1}=\frac{15}{17}$ $a_{3}=\frac{5^{2}-1}{5^{2}+1}=\frac{24}{26}=\frac{12}{13}$ $a_{4}=\frac{6^{2}-1}{6^{2}+1}=\frac{35}{37}$ $a_{5}=\frac{7^{2}-1}{7^{2}+1}=\frac{48}{50}=\frac{24}{25}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.