Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 10 - Section 10.5 - Conic Sections - 10.5 Exercises - Page 709: 23

Answer

Foci: $(\pm\sqrt{2},1)$ Vertices: $(\pm 1,1)$ Asymptotes: $y=-x+1$ or $y=x+1$

Work Step by Step

Recall: The hyperbola $\frac{(x-h)^2}{a^2}-\frac{(y-k)^2}{b^2}=1$ has the foci $(h\pm c,k)$ where $c^2=a^2+b^2$, the vertices $(h\pm a,k)$, and the asymptotes $y-k=\pm (b/a)(x-h)$. We have $x^2-y^2+2y=2$. Rewrite this equation: $x^2-y^2+2y=2$ $x^2-y^2+2y-1=2-1$ $x^2-(y-1)^2=1$ $\frac{(x-0)^2}{1}-\frac{(y-1)^2}{1}=1$ Then, $h=0$ $k=1$ $a=1$ $b=1$ $c=\sqrt{a^2+b^2}=\sqrt{1+1}=\sqrt{2}$ $b/a=1/1=1$ Find the foci: $(h\pm c,k)=(0\pm \sqrt{2},1)=(\pm\sqrt{2},1)$ Find the vertices: $(h\pm a,k)=(0\pm 1,1)=(\pm 1,1)$ Find the asymptotes: $y-k=\pm (b/a)(x-h)$ $y-1=\pm 1(x-0)$ $y-1=\pm x$ $y=\pm x+1$ $y=-x+1$ or $y=x+1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.