Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 10 - Section 10.5 - Conic Sections - 10.5 Exercises - Page 709: 32

Answer

Type: Ellipse Vertices: $(\pm\sqrt{2}+1,2)$ Foci: $(0,2)$ and $(2,2)$

Work Step by Step

Rewrite the equation: $x^2-2x+2y^2-8y+7=0$ $x^2-2x+1+2y^2-8y+8+7=1+8$ $(x-1)^2+2(y^2-4y+4)+7=9$ $(x-1)^2+2(y-2)^2=2$ $\frac{(x-1)^2}{2}+\frac{(y-2)^2}{1}=1$ Recall: The equation $\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1$ for $a\geq b$ describes an ellipse with the vertices $(\pm a+h,k)$ and the foci $(\pm c+h,k)$ where $c^2=a^2-b^2$. We have $a^2=2\to a=\sqrt{2}$ $b^2=1\to b=1$ $c=\sqrt{a^2-b^2}=\sqrt{2-1}=\sqrt{1}=1$ $h=1$ and $k=2$ $\pm a+h=\pm \sqrt{2}+1$ $\pm c+h=\pm 1+1\to 0$ or $2$ So, the given equation describes an ellipse whose the vertices are $(\pm\sqrt{2}+1,2)$ and the foci are $(0,2)$ and $(2,2)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.