Answer
1) Domain: $x\geq -12$
Work Step by Step
Given \begin{equation}
g(x)=-\sqrt{x+12}.
\end{equation}
This is an even root function because the index, $n=2$, is even. The radicand must be positive. So, we require $x+12 \geq 0 \Longrightarrow x \geq -12$.
1) The domain is $x\geq -12$.
Make a table of the function, $g(x)$ versus $x$.
\begin{equation}
\begin{array}{|c|cccc|}
\hline \boldsymbol{x} & -12& 0 & 10 & 20 \\
\hline \boldsymbol{g}(\boldsymbol{x})=-\sqrt{\boldsymbol{x}+\mathbf{12}} & 0.0 & -3.5 & -4.7 & -6.5 \\
\hline
\end{array}
\end{equation} 2) See the graph.