Answer
1) Domain: $x\geq -2$
Work Step by Step
Given \begin{equation}
f(x)=\sqrt{x+2}.
\end{equation} This is an even root function because the index, $n=2$, is even. The radicand must be positive. So, we require $x+2 \geq 0 \Longrightarrow x \geq -2. $
1)The domain is $x\geq -2$
Make a table of the function, $f(x)$ verses $x$.
\begin{equation}
\begin{array}{|c|cccc|}
\hline \boldsymbol{x} & -2 & 5 & 10 & 15 \\
\hline \boldsymbol{f}(\boldsymbol{x})=\sqrt{\boldsymbol{x}+\mathbf{2}} & 0 & -2.65 & 3.46 & 4.12 \\
\hline
\end{array}
\end{equation} 2) See the graph.