Answer
Domain: $x\geq 0$
Range: $y\leq 0$
Work Step by Step
Given \begin{equation}
M(p)=-2.3 \sqrt[6]{p}.
\end{equation} The radicand of an even radical function must be positive. This means that we must have $x\geq 0$. Also, we see that the function's value $y=M(p)$ must satisfy $y\leq 0$ because $$\sqrt[6]{p}\geq 0\implies 2.3\sqrt[6]{p}\geq 0\implies -2.3\sqrt[6]{p}\leq 0.$$ We got: \begin{equation}
\begin{aligned}
\textbf{Domain :}\quad & p\geq 0\\
\textbf{Range :}\quad & y\leq 0\\\\
\end{aligned}
\end{equation}