Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 7 - Rational Functions - 7.3 Multiplying and Dividing Rational Expressions - 7.3 Exercises - Page 581: 49

Answer

$\frac{5 t+3}{8 t+5}$

Work Step by Step

Given $$\frac{10 t^2-29 t-21}{6 t^2-5 t-56} \cdot \frac{3 t^2-4 t-32}{8 t^2-27 t-20}.$$ First factor each of the terms in the numerators and denominators of the two fractions. $$\textbf{Numerator 1}$$ \begin{equation} \begin{aligned} 10 t^2-29 t-21&=10 t^2-35t+6t-21 \\ &=5t(2t-7)+3(2t-7)\\ &= (5t+3)(2t-7). \end{aligned} \end{equation} $$\textbf{Denominator 1}$$ \begin{equation} \begin{aligned} 6 t^2-5 t-56&= 6 t^2+16 t-21 t-56 \\ &=2 t(3 t+8)-7(3 t+8)\\ &= (3 t+8)(2 t-7). \end{aligned} \end{equation} $$\textbf{Numerator 2}$$ \begin{equation} \begin{aligned} 3 t^2-4 t-32&= 3 t^2+8 t-12 t-32 \\ &=t(3 t+8)-4(3 t+8)\\ &= (3 t+8)(t-4). \end{aligned} \end{equation} $$\textbf{Denominator 2}$$ \begin{equation} \begin{aligned} 8t^2-27t-20&= 8 t^2+5 t-32 t-20\\ &=t(8 t+5)-4(8 t+5)\\ &= (8 t+5)(t-4). \end{aligned} \end{equation} Then perform the multiplication and cancel out like terms. \begin{equation} \begin{aligned} &\frac{10 t^2-29 t-21}{6 t^2-5 t-56} \cdot \frac{3 t^2-4 t-32}{8 t^2-27 t-20} = \frac{(5 t+3)(2 t-7)}{(3 t+8)(2 t-7)}\cdot\frac{(3 t+8)(t-4)}{(8 t+5)(t-4)}\\ &= \frac{5 t+3}{8 t+5}. \end{aligned} \end{equation} The solution is: \begin{equation} \frac{10 t^2-29 t-21}{6 t^2-5 t-56} \cdot \frac{3 t^2-4 t-32}{8 t^2-27 t-20}= \frac{5 t+3}{8 t+5}. \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.