Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 7 - Rational Functions - 7.3 Multiplying and Dividing Rational Expressions - 7.3 Exercises: 35

Answer

$= \frac{(x-4)}{(x-8)}$

Work Step by Step

$\frac{w^{2}+8w+15}{w^{2}+12w+35} \div \frac{w^{2}-5w-24}{w^{2}+3w-28}$ $= \frac{w^{2}+8w+15}{w^{2}+12w+35} \times \frac{w^{2}+3w-28}{w^{2}-5w-24}$ $= \frac{(x+5)(x+3)}{(x+7)(x+5)} \times \frac{(x+7)(x-4)}{(x-8)(x+3)}$ $= \frac{(x+3)}{(x+7)} \times \frac{(x+7)(x-4)}{(x-8)(x+3)}$ $= \frac{1}{(x+7)} \times \frac{(x+7)(x-4)}{(x-8)}$ $= \frac{1}{1} \times \frac{(x-4)}{(x-8)}$ $= 1\times \frac{(x-4)}{(x-8)}$ $= \frac{(x-4)}{(x-8)}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.