Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 3 - Exponents, Polynomials and Functions - 3.2 Combining Functions - 3.2 Exercises - Page 247: 71

Answer

$(a)f(x)+g(x)=x^2+7x+15$ $(b)g(x)-f(x)=x^2+x+5$ $(c)f(x)g(x)=3x^3+17x^2+50x+50$ $(d)\frac{f(x)}{g(x)}=\frac{3x+5}{x^2+4x+10}$

Work Step by Step

$f(x)=3x+5$ $g(x)=x^2+4x+10$ $(a)f(x)+g(x)=3x+5+x^2+4x+10$ $f(x)+g(x)=x^2+3x+4x+5+10=x^2+7x+15$ $(b)g(x)-f(x)=x^2+4x+10-(3x+5)$ $g(x)-f(x)=x^2+4x+10-3x-5$ $g(x)-f(x)=x^2+4x-3x+10-5$ $g(x)-f(x)=x^2+x+5$ $(c)f(x)g(x)=(3x+5)(x^2+4x+10)$ $f(x)g(x)=3x(x^2+4x+10)+ 5(x^2+4x+10)$ $f(x)g(x)=3x^3+12x^2+30x+5x^2+20x+50$ $f(x)g(x)=3x^3+12x^2+5x^2+30x+20x+50$ $f(x)g(x)=3x^3+17x^2+50x+50$ $(d)\frac{f(x)}{g(x)}=\frac{3x+5}{x^2+4x+10}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.