Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 3 - Exponents, Polynomials and Functions - 3.2 Combining Functions - 3.2 Exercises - Page 247: 70

Answer

$(a) f(x)+g(x)=\frac{17}{3}x-\frac{8}{3}$ $(b) f(x)-g(x)=-\frac{13}{3}x+\frac{10}{3}$ $(c)f(x)g(x)=\frac{1}{3}( 10x^2-x-3)$ $(d)\frac{f(x)}{g(x)}=\frac{ 2x+1 }{ 15x-9 }$

Work Step by Step

$ f(x)=\frac{2}{3}x+\frac{1}{3}=\frac{1}{3}(2x+1)$ $g(x)=5x-3$ $(a) f(x)+g(x)=\frac{1}{3}(2x+1)+5x-3$ $ f(x)+g(x)=\frac{2}{3}x+\frac{1}{3}+5x-3$ $ f(x)+g(x)=(\frac{2}{3}+5)x+\frac{1}{3}-3$ $ f(x)+g(x)=\frac{17}{3}x-\frac{8}{3}$ $(b) f(x)-g(x)=\frac{2}{3}x+\frac{1}{3} -(5x-3)$ $ f(x)-g(x)=\frac{2}{3}x+\frac{1}{3}-5x+3$ $ f(x)-g(x)=(\frac{2}{3}-5)x+\frac{1}{3}+3$ $ f(x)-g(x)=-\frac{13}{3}x+\frac{10}{3}$ $(c)f(x)g(x)=\frac{1}{3}(2x+1)(5x-3)$ $f(x)g(x)=\frac{1}{3}(2x(5x-3)+1(5x-3))$ $f(x)g(x)=\frac{1}{3}( 10x^2-6x+5x-3)$ $f(x)g(x)=\frac{1}{3}( 10x^2-x-3)$ $(d)\frac{f(x)}{g(x)}=\frac{ \frac{1}{3}(2x+1) }{ 5x-3 }$ $\frac{f(x)}{g(x)}=\frac{ [\frac{1}{3}(2x+1) ] \times3 }{ (5x-3 ) \times 3 }$ $\frac{f(x)}{g(x)}=\frac{ 2x+1 }{ 15x-9 }$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.