Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 3 - Exponents, Polynomials and Functions - 3.2 Combining Functions - 3.2 Exercises - Page 247: 69

Answer

$(a)f(x)+g(x)=\frac{5}{2}x -\frac{2}{5}$ $(b)f(x)-g(x)=-\frac{3}{2}x +\frac{4}{5}$ $(c)f(x)g(x)=x^2+\frac{1}{10}x-\frac{3}{25}$ $(d) \frac{f(x)}{g(x)}=\frac{ 5x+2 }{ 20x-6 }$

Work Step by Step

$f(x)=\frac{1}{2}x+\frac{1}{5}$ $g(x)=2x-\frac{3}{5}$ $(a)f(x)+g(x)=\frac{1}{2}x+\frac{1}{5}+2x-\frac{3}{5}$ $f(x)+g(x)=\frac{1}{2}x+2x +\frac{1}{5}-\frac{3}{5}$ $f(x)+g(x)=(\frac{1}{2}+2)x +\frac{1}{5}-\frac{3}{5}$ $f(x)+g(x)=\frac{5}{2}x -\frac{2}{5}$ $(b)f(x)-g(x)=\frac{1}{2}x+\frac{1}{5}-(2x-\frac{3}{5})$ $f(x)-g(x)=\frac{1}{2}x-2x +\frac{1}{5}+\frac{3}{5}$ $f(x)-g(x)=(\frac{1}{2}-2)x +\frac{1}{5}+\frac{3}{5}$ $f(x)-g(x)=-\frac{3}{2}x +\frac{4}{5}$ $(c)f(x)g(x)=(\frac{1}{2}x+\frac{1}{5})(2x-\frac{3}{5})$ $f(x)g(x)=\frac{1}{2}x(2x-\frac{3}{5})+\frac{1}{5}(2x-\frac{3}{5})$ $f(x)g(x)=\frac{1}{2}x(2x-\frac{3}{5})+\frac{1}{5}(2x-\frac{3}{5})$ $f(x)g(x)=\frac{1}{2}x\times2x-\frac{1}{2}x\times\frac{3}{5}+\frac{1}{5}\times2x-\frac{1}{5}\times\frac{3}{5}$ $f(x)g(x)=x^2-\frac{3}{10}x+\frac{2}{5}x-\frac{3}{25}$ $f(x)g(x)=x^2+\frac{1}{10}x-\frac{3}{25}$ $(d) \frac{f(x)}{g(x)}=\frac{ \frac{1}{2}x+\frac{1}{5} }{ 2x-\frac{3}{5} }$ $ \frac{f(x)}{g(x)}=\frac{ [\frac{1}{2}x+\frac{1}{5}] \times10 }{ [ 2x-\frac{3}{5}]\times10 }$ $ \frac{f(x)}{g(x)}=\frac{ [\frac{1}{2}\times10x+\frac{1}{5}\times10] }{ [ 2x\times10-\frac{3}{5}\times10 ] }$ $ \frac{f(x)}{g(x)}=\frac{ 5x+2 }{ 20x-6 }$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.