Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 1-8 - Cumulative Review - Page 681: 97

Answer

$\frac{20+5\sqrt{7}+4\sqrt{3}+\sqrt{21}}{9}$

Work Step by Step

Given \begin{equation} \frac{5+\sqrt{3}}{4-\sqrt{7}}. \end{equation} Rationalize the denominator and simplify. \begin{equation} \begin{aligned} \frac{5+\sqrt{3}}{4-\sqrt{7}}&=\frac{(5+\sqrt{3})}{(4-\sqrt{7})}\cdot \frac{(4+\sqrt{7})}{(4+\sqrt{7})}\\ &= \frac{5(4+\sqrt{7})+\sqrt{3}(4+\sqrt{7})}{16-7}\\ &= \frac{20+5\sqrt{7}+4\sqrt{3}+\sqrt{21}}{9}. \end{aligned} \end{equation} Hence \begin{equation} \frac{5+\sqrt{3}}{4-\sqrt{7}}= \frac{20+5\sqrt{7}+4\sqrt{3}+\sqrt{21}}{9}. \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.