Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 9 - Review Exercises - Page 638: 53

Answer

$\left\{2\right\}$

Work Step by Step

Using the properties of logarithms, the given equation, $ \log_3(x+2)-\log_3 x=\log_3 2 $, is equivalent to \begin{align*}\require{cancel} \log_3\dfrac{x+2}{x}&=\log_3 2 &(\text{use }\log_b \dfrac{x}{y}=\log_b x-\log_b y) .\end{align*} Since $\log_b x=\log_b y$ implies $x=y$, the equation above implies \begin{align*}\require{cancel} \dfrac{x+2}{x}&=2 .\end{align*} Using the properties of equality, the equation above is equivalent to \begin{align*}\require{cancel} \cancel x\cdot\dfrac{x+2}{\cancel x}&=2\cdot x \\\\ x+2&=2x \\ x-x+2&=2x-x \\ 2&=x .\end{align*} Hence, the solution set of the equation $ \log_3(x+2)-\log_3 x=\log_3 2 $ is $ \left\{2\right\} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.