Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 9 - Review Exercises - Page 638: 45

Answer

$2.5\times10^{-5}$

Work Step by Step

Using $ pH=-\log[H_3O^+] $ or the formula for the pH of a solution, with $pH= 4.6 $, then \begin{align*}\require{cancel} 4.6&=-\log[H_3O^+] \\ 4.6&=-\log_{10}[H_3O^+] &(\text{use }\log b=\log_{10}b) \\ 4.6&=\log_{10}[H_3O^+]^{-1} &(\text{use }\log_b x^y=y\log_b x) .\end{align*} Since $\log_b y=x$ implies $y=b^x$, then the equation above implies \begin{align*}\require{cancel} 10^{4.6}&=[H_3O^+]^{-1} \\ \left(10^{4.6}\right)^{-1}&=\left([H_3O^+]^{-1}\right)^{-1} \\ 10^{-4.6}&=[H_3O^+] \\ [H_3O^+]&=10^{-4.6} .\end{align*} Using the laws of exponents, the equation above is equivalent to \begin{align*}\require{cancel} [H_3O^+]&=\dfrac{1}{10^{4.6}} \\\\&= \dfrac{1}{10^{0.6+4}} \\\\&= \dfrac{1}{10^{0.6}\times10^4} \\\\&= \dfrac{1}{10^{0.6}}\times10^{-4} \\\\&= 0.25\times10^{-4} \\\\&= 2.5\times10^{-5} .\end{align*} Hence, the hydrogen ion concentration, $[H_3O^+]$, of orange juice is $ 2.5\times10^{-5} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.