Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 9 - Review Exercises - Page 638: 49

Answer

$\left\{4.907\right\}$

Work Step by Step

Taking the logarithm of both sides, the given equation, $ 2^{x-1}=15 $ is equivalent to \begin{align*}\require{cancel} \log2^{x-1}=\log15 .\end{align*} Using the properties of logarithms, the equation above is equivalent to \begin{align*}\require{cancel} (x-1)\log2&=\log15 &(\text{use }\log_b x^y=y\log_b x) \\ x\log2-\log2&=\log15 &(\text{use the Distributive Property}) .\end{align*} Using the properties of equality, the equation above is equivalent to \begin{align*}\require{cancel} x\log2&=\log15+\log2 \\\\ \dfrac{x\cancel{\log2}}{\cancel{\log2}}&=\dfrac{\log15+\log2}{\log2} \\\\ x&=\dfrac{\log15+\log2}{\log2} .\end{align*} Using a calculator, the approximate values of each logarithmic expression above are \begin{align*} \log2&\approx0.30103 \\ \log15&\approx1.17610 .\end{align*} Substituting the approximate values in $ x=\dfrac{\log15+\log2}{\log2} $, then \begin{align*} x&\approx\dfrac{1.17610+0.30103}{0.30103} \\\\ x&\approx4.907 .\end{align*} Hence, the solution set to the equation $ 2^{x-1}=15 $ is $ \left\{4.907\right\} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.