Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Mixed Review Exercises - Page 576: 7

Answer

$\{\pm\sqrt{4+\sqrt{15}},\pm\sqrt{4-\sqrt{15}}\}$

Work Step by Step

Using the properties of equality, the given equation, $ x^4-8x^2=-1 ,$ is equivalent to \begin{align*} x^4-8x^2+1&=0 .\end{align*} Let $z= x^2 $. Then the equation above is equivalent to \begin{align*} \left(x^2\right)^2-8x^2+1&=0 \\ z^2-8z^2+1&=0 .\end{align*} Using $ax^2+bx+c=0,$ the equation above has $a= 1 $, $b= -8 $ and $c= 1 $. Using $ x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a} $ or the Quadratic Formula, then \begin{align*}\require{cancel} z&=\dfrac{-(-8)\pm\sqrt{(-8)^2-4(1)(1)}}{2(1)} \\\\&= \dfrac{8\pm\sqrt{64-4}}{2} \\\\&= \dfrac{8\pm\sqrt{60}}{2} \\\\&= \dfrac{8\pm\sqrt{4\cdot15}}{2} \\\\&= \dfrac{8\pm2\sqrt{15}}{2} \\\\&= \dfrac{\cancelto48\pm\cancelto12\sqrt{15}}{\cancelto12} \\\\&= 4\pm\sqrt{15} .\end{align*} Since $z=x^2$, then by back-substitution, \begin{align*} x^2&=4\pm\sqrt{15} \\ x&=\pm\sqrt{4\pm\sqrt{15}} &(\text{take square root of both sides}) .\end{align*} Hence, the solution set of the equation $ x^4-8x^2=-1 $ is $\{\pm\sqrt{4+\sqrt{15}},\pm\sqrt{4-\sqrt{15}}\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.