Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Mixed Review Exercises - Page 576: 1

Answer

$R=\pm\dfrac{\sqrt{Vh-r^2h}}{h}$

Work Step by Step

Using the properties of equality, in terms of $ R $, the given equation, $ V=r^2+R^2h ,$ is equivalent to \begin{align*}\require{cancel} V-r^2&=r^2+R^2h-r^2 \\ V-r^2&=R^2h \\\\ \dfrac{V-r^2}{h}&=\dfrac{R^2\cancel h}{\cancel h} \\\\ \dfrac{V-r^2}{h}&=R^2 \\\\ R^2&=\dfrac{V-r^2}{h} .\end{align*} Taking the square root of both sides (Square Root Property), the equation above is equivalent to \begin{align*} R&=\pm\sqrt{\dfrac{V-r^2}{h}} .\end{align*} Using the properties of radicals, the equation above is equivalent to \begin{align*} R&=\pm\sqrt{\dfrac{V-r^2}{h}\cdot\dfrac{h}{h}} &(\text{rationalize the denominator}) \\\\ R&=\pm\sqrt{\dfrac{1}{h^2}\cdot (Vh-r^2h)} \\\\ R&=\pm\sqrt{\dfrac{1}{h^2}}\cdot \sqrt{Vh-r^2h} \\\\ R&=\pm\dfrac{\sqrt{Vh-r^2h}}{h} .\end{align*} Hence, $ V=r^2+R^2h $ is equivalent to \begin{align*} R=\pm\dfrac{\sqrt{Vh-r^2h}}{h} .\end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.