Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Mixed Review Exercises - Page 576: 4

Answer

$d=\pm \dfrac{\sqrt{kSI}}{I}$

Work Step by Step

Using the properties of equality, in terms of $ d $, the given equation, $ S=\dfrac{Id^2}{k} ,$ is equivalent to \begin{align*}\require{cancel} k(S)&=\left(\dfrac{Id^2}{\cancel k}\right)\cancel k \\\\ kS&=Id^2 \\\\ \dfrac{kS}{I}&=\dfrac{\cancel Id^2}{\cancel I} \\\\ \dfrac{kS}{I}&=d^2 \\\\ d^2&=\dfrac{kS}{I} .\end{align*} Taking the square root of both sides (Square Root Property), the equation above is equivalent to \begin{align*} d&=\pm\sqrt{\dfrac{kS}{I}} .\end{align*} Using the properties of radicals, the equation above is equivalent to \begin{align*} d&=\pm\sqrt{\dfrac{kS}{I}\cdot\dfrac{I}{I}} &(\text{rationalize the denominator}) \\\\ d&=\pm\sqrt{\dfrac{1}{I^2}\cdot kSI} \\\\ d&=\pm\sqrt{\dfrac{1}{I^2}}\cdot \sqrt{kSI} \\\\ d&=\pm \dfrac{1}{I}\cdot \sqrt{kSI} \\\\ d&=\pm \dfrac{\sqrt{kSI}}{I} .\end{align*} Hence, $ S=\dfrac{Id^2}{k} $ is equivalent to \begin{align*} d=\pm \dfrac{\sqrt{kSI}}{I} .\end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.