Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Mixed Review Exercises - Page 576: 2

Answer

$\left\{1\pm\dfrac{\sqrt{3}}{3}i\right\}$

Work Step by Step

In the form $ax^2+bx+c=0,$ the given equation, $ 3t^2-6t=-4 $, is equivalent to \begin{align*} 3t^2-6t+4&=0 .\end{align*} The equation above has $a= 3 $, $b= -6$ and $c= 4 $. Using $ x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a} $ or the Quadratic Formula, then \begin{align*} t&=\dfrac{-(-6)\pm\sqrt{(-6)^2-4(3)(4)}}{2(3)} \\\\&= \dfrac{6\pm\sqrt{36-48}}{6} \\\\&= \dfrac{6\pm\sqrt{-12}}{6} .\end{align*} Using the properties of radicals, the equation above is equivalent to \begin{align*}\require{cancel} t&=\dfrac{6\pm\sqrt{12\cdot(-1)}}{6} \\\\ t&=\dfrac{6\pm\sqrt{12}\cdot\sqrt{-1}}{6} \\\\ t&=\dfrac{6\pm\sqrt{4\cdot3}\cdot\sqrt{-1}}{6} \\\\ t&=\dfrac{6\pm\sqrt{4}\cdot\sqrt{3}\cdot\sqrt{-1}}{6} \\\\ t&=\dfrac{6\pm2\cdot\sqrt{3}\cdot i}{6} &(\text{use }i=\sqrt{-1}) \\\\ t&=\dfrac{\cancelto36\pm\cancelto12\cdot\sqrt{3}\cdot i}{\cancelto36} \\\\ t&=\dfrac{3\pm\sqrt{3}\cdot i}{3} \\\\ t&=\dfrac{3}{3}\pm\dfrac{\sqrt{3}\cdot i}{3} \\\\ t&=1\pm\dfrac{\sqrt{3}}{3}i .\end{align*} Hence, the solution set of $ 3t^2-6t=-4 $ is $ \left\{1\pm\dfrac{\sqrt{3}}{3}i\right\} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.