Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Chapter R-8 - Cumulative Review Exercises - Page 578: 6

Answer

$\left\{\dfrac{7\pm\sqrt{177}}{4}\right\}$

Work Step by Step

Using $(a+b)(c+d)=ac+ad+bc+bd$ or the FOIL Method, the the given equation, $ (r-5)(2r+3)=1 ,$ is equivalent to \begin{align*} r(2r)+r(3)-5(2r)-5(3)&=1 \\ 2r^2+3r-10r-15&=1 \\ 2r^2-7r-15&=1 \\ 2r^2-7r+(-15-1)&=0 \\ 2r^2-7r-16&=0 .\end{align*} Using $ax^2+bx+c=0$, the equation above has $a= 2 $, $b= -7 $, and $c= -16 $. Using $ x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a} $ or the Quadratic Formula, then \begin{align*}\require{cancel} x&=\dfrac{-(-7)\pm\sqrt{(-7)^2-4(2)(-16)}}{2(2)} \\\\&= \dfrac{7\pm\sqrt{49+128}}{4} \\\\&= \dfrac{7\pm\sqrt{177}}{4} .\end{align*} Hence, the solution set of the equation $ (r-5)(2r+3)=1 $ is $\left\{\dfrac{7\pm\sqrt{177}}{4}\right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.