Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Chapter R-8 - Cumulative Review Exercises - Page 578: 4

Answer

$\left\{\dfrac{2}{3}\right\}$

Work Step by Step

Squaring both sides, the given equation, $ 2x=\sqrt{\dfrac{5x+2}{3}} $, is equivalent to \begin{align*} (2x)^2&=\left(\sqrt{\dfrac{5x+2}{3}}\right)^2 \\\\ 4x^2&=\dfrac{5x+2}{3} .\end{align*} In the form $ax^2+bx+c=0$, the equation above is equivalent to \begin{align*}\require{cancel} 3\cdot4x^2&=\dfrac{5x+2}{\cancel3}\cdot\cancel3 \\\\ 12x^2&=5x+2 \\ 12x^2-5x-2&=0 .\end{align*} Using factoring of trinomials, the equation above is equivalent to \begin{align*} (3x-2)(4x+1)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving the variable, then \begin{array}{l|r} 3x-2=0 & 4x+1=0 \\ 3x=2 & 4x=-1 \\\\ x=\dfrac{2}{3} & x=-\dfrac{1}{4} .\end{array} Since both sides of the original equation were raised to the second power, then checking of solutions is a must. Substituting the values of $x$ above in the original equation results to \begin{array}{l|r} \text{If }x=\dfrac{2}{3}: & \text{If }x=-\dfrac{1}{4}: \\\\ 2\left(\dfrac{2}{3}\right)\overset{?}=\sqrt{\dfrac{5\left(\dfrac{2}{3}\right)+2}{3}} & 2\left(-\dfrac{1}{4}\right)\overset{?}=\sqrt{\dfrac{5\left(-\dfrac{1}{4}\right)+2}{3}} \\\\ \dfrac{4}{3}\overset{?}=\sqrt{\dfrac{\dfrac{10}{3}+\dfrac{6}{3}}{3}} & -\dfrac{1}{2}\overset{?}=\sqrt{\dfrac{\dfrac{5}{4}+2}{3}} \\\\ \dfrac{4}{3}\overset{?}=\sqrt{\dfrac{\dfrac{16}{3}}{3}} & -\dfrac{1}{2}\ne\text{some nonnegative number.} \\\\ \dfrac{4}{3}\overset{?}=\sqrt{\dfrac{16}{9}} & \\\\ \dfrac{4}{3}\overset{\checkmark}=\dfrac{4}{3} & .\end{array} Since $x=-\dfrac{1}{4}$ DOES NOT satisfy the original equation then the only solultion is $x=\dfrac{2}{3}$. Hence, the solution set of the equation $ 2x=\sqrt{\dfrac{5x+2}{3}} $ is $\left\{\dfrac{2}{3}\right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.