Elementary Linear Algebra 7th Edition

Published by Cengage Learning
ISBN 10: 1-13311-087-8
ISBN 13: 978-1-13311-087-3

Chapter 6 - Linear Transformations - 6.1 Introduction to Linear Transformations - 6.1 Exercises - Page 300: 8

Answer

Image of $(2,4)$ is $\left[ {\begin{array}{*{20}{c}} {\sqrt 3 - 2}\\ { - 2}\\ 4 \end{array}} \right]$ The preimage of $w$ is $(2,0)$

Work Step by Step

We are given $T\left[ {\begin{array}{*{20}{c}} {{v_1}}\\ {{v_2}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {\frac{{\sqrt 3 }}{2}{v_1} - \frac{1}{2}{v_2}}\\ {{v_1} - {v_2}}\\ { {v_2}} \end{array}} \right]$ a) Image of $v=(2,4)$ is $\begin{array}{*{20}{l}} {T\left[ {\begin{array}{*{20}{c}} {{v_1}}\\ {{v_2}} \end{array}} \right]}\\ { = T\left[ {\begin{array}{*{20}{c}} 2\\ 4 \end{array}} \right]}\\ { = \left[ {\begin{array}{*{20}{c}} {\frac{{\sqrt 3 }}{2}(2) - \frac{1}{2}(4)}\\ {2 - 4}\\ 4 \end{array}} \right]}\\ { = \left[ {\begin{array}{*{20}{c}} {\sqrt 3 - 2}\\ { - 2}\\ 4 \end{array}} \right]}\\ {} \end{array}$ b) Let the preimage of $w=(\sqrt{3},2,0)$ be $(a,b)$. $\begin{array}{l} \Rightarrow T\left[ {\begin{array}{*{20}{c}} a\\ b \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { \sqrt 3 }\\ { 2}\\ { 0} \end{array}} \right]\\ \Rightarrow \left[ {\begin{array}{*{20}{c}} {\frac{{\sqrt 3 }}{2}a - \frac{{1}}{2}b}\\ {a - b}\\ { b} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { \sqrt 3 }\\ { 2}\\ { 0} \end{array}} \right] \end{array}$ Comparing each component of both vectors, we have $\begin{array}{*{20}{l}} {\frac{{\sqrt 3 }}{2}a - \frac{1}{2}b = \sqrt 3 ,\quad (1)}\\ {a - b = 2,\quad (2)}\\ {b = 0,\quad (3)} \end{array}$ From equation $(3)$, we have $b=0$. Putting this in equation $(2)$, we get $a-0=2\Rightarrow a=2$ Therefore, the preimage of $w$ is $(2,0)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.