Elementary Linear Algebra 7th Edition

Published by Cengage Learning
ISBN 10: 1-13311-087-8
ISBN 13: 978-1-13311-087-3

Chapter 6 - Linear Transformations - 6.1 Introduction to Linear Transformations - 6.1 Exercises - Page 300: 19

Answer

$T$ is a linear transformation.

Work Step by Step

A transformation is said to be linear if $T(av+w)=aT(v)+T(w)$, for all $v,w$ in the given domain and for all scalars $a$. Let $A,B$ be arbitrary elements of the domain $M_{3,3}$ and $k$ be any arbitrary scalar. Then $\begin{array}{l} T\left( {kA + B} \right)\\ = \left[ {\begin{array}{*{20}{c}} 0&0&1\\ 0&1&0\\ 1&0&0 \end{array}} \right](kA + B)\\ = \left[ {\begin{array}{*{20}{c}} 0&0&1\\ 0&1&0\\ 1&0&0 \end{array}} \right](kA) + \left[ {\begin{array}{*{20}{c}} 0&0&1\\ 0&1&0\\ 1&0&0 \end{array}} \right](B)\\ = k\left[ {\begin{array}{*{20}{c}} 0&0&1\\ 0&1&0\\ 1&0&0 \end{array}} \right]A + \left[ {\begin{array}{*{20}{c}} 0&0&1\\ 0&1&0\\ 1&0&0 \end{array}} \right]B\\ = kT(A) + T(B) \end{array}$ Hence, $T$ is a linear transformation. Note: here we have used distributive properties of matrices. 1) For all matrices $A,B$ and $C$, $A(B+C)=AB+AC$ 2) For all matrices $A$ and $B$ and for all scalors $k$, $(kAB)=k(AB)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.