Elementary Linear Algebra 7th Edition

Published by Cengage Learning
ISBN 10: 1-13311-087-8
ISBN 13: 978-1-13311-087-3

Chapter 5 - Inner Product Spaces - Review Exercises - Page 284: 28

Answer

See the explanation below.

Work Step by Step

$u=(0,3,\frac{1}{3}), \quad v=(\frac{4}{3}, 1,-3)$, $\langle u, v \rangle =2u_1v_1+ u_2v_2+2u_3v_3 $. $$ \langle u, v\rangle =2u_1v_1+ u_2v_2+2u_3v_3=0+3-2=1,$$ $$\| u \|=\sqrt{\langle u, u\rangle} =\sqrt{2u^2_1+ u^2_2+2u^2_3}=\sqrt{0+9+\frac{2}{9}}=\sqrt{\frac{83}{9}}$$ $$\|v \|=\sqrt{\langle v, v\rangle} =\sqrt{2v^2_1+ v^2_2+2v^2_3}=\sqrt{\frac{32}{9}+1+18}=\sqrt{\frac{203}{9}}$$ Now, we have The Cauchy-Schwarz Inequality: $|\langle u, v \rangle|=1\leq\| u \|\| v \|=\sqrt{\frac{83}{9}}\sqrt{\frac{203}{9}}=14.42$ The triangle inequality: $\| u+v \| =\| (\frac{4}{3},4,-\frac{8}{3}) \| =\sqrt{\frac{32}{9}+16+\frac{128 }{9}}=\sqrt {\frac{304}{9}}=5.81\\ \leq\| u \|+\| v \|=\sqrt{\frac{83}{9}}+\sqrt{\frac{203}{9}}=7.78.$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.