Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - 12.4 Properties of Logarithmic Functions - 12.4 Exercise Set - Page 810: 42


$2\log_b w+\log_b x-3\log_b y-\log_b z$

Work Step by Step

Using the properties of logarithms, the given expression, $ \log_b \dfrac{w^2x}{y^3z} ,$ is equivalent to \begin{array}{l}\require{cancel} \log_b (w^2x)-\log_b (y^3z) \\\\= \log_b w^2+\log_b x-\left( \log_b y^3+\log_b z \right) \\\\= \log_b w^2+\log_b x-\log_b y^3-\log_b z \\\\= 2\log_b w+\log_b x-3\log_b y-\log_b z .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.