#### Answer

$\left( 2,-\dfrac{3}{2} \right)$

#### Work Step by Step

With the given points, then
\begin{array}{l}\require{cancel}
x_1=
-7
,\\x_2=
3
,\\y_1=
-2
,\\y_2=
-1
.\end{array}
Using $\left( \dfrac{x_1+x_2}{2}, \dfrac{y_1+y_2}{2} \right)$ or the Midpoint Formula, then the midpoint of the line segment with the endpoints given above is
\begin{array}{l}\require{cancel}
\left( \dfrac{x_1+x_2}{2}, \dfrac{y_1+y_2}{2} \right)
\\\\=
\left( \dfrac{-7+3}{2}, \dfrac{-2+(-1)}{2} \right)
\\\\=
\left( \dfrac{-7+3}{2}, \dfrac{-2-1}{2} \right)
\\\\=
\left( \dfrac{4}{2}, \dfrac{-3}{2} \right)
\\\\=
\left( 2,-\dfrac{3}{2} \right)
.\end{array}