#### Answer

$1-2i$

#### Work Step by Step

Multiplying the denominator by $i$, the given expression, $
\dfrac{7i+14}{7i}
,$ is equivalent to
\begin{array}{l}\require{cancel}
\dfrac{7i+14}{7i}\cdot\dfrac{i}{i}
\\\\=
\dfrac{7i(i)+14(i)}{7i(i)}
\\\\=
\dfrac{7i^2+14i}{7i^2}
\\\\=
\dfrac{7(-1)+14i}{7(-1)}
\\\\=
\dfrac{-7+14i}{-7}
\\\\=
\dfrac{-7(1-2i)}{-7}
\\\\=
\dfrac{\cancel{-7}(1-2i)}{\cancel{-7}}
\\\\=
1-2i
.\end{array}