#### Answer

$\dfrac{5\sqrt[5]{y^4}z}{\sqrt[3]{x^2}}$

#### Work Step by Step

Using the laws of exponents, the given expression, $
5x^{-2/3}y^{4/5}z
,$ is equivalent to
\begin{array}{l}\require{cancel}
\dfrac{5y^{4/5}z}{x^{2/3}}
.\end{array}
Using $a^{m/n}=\sqrt[n]{a^m}=(\sqrt[n]{a})^m$, the expression, $
\dfrac{5y^{4/5}z}{x^{2/3}}
,$ simplifies to
\begin{array}{l}\require{cancel}
\dfrac{5\sqrt[5]{y^4}z}{\sqrt[3]{x^2}}
.\end{array}