Elementary Algebra

Published by Cengage Learning
ISBN 10: 1285194055
ISBN 13: 978-1-28519-405-9

Chapter 10 - Quadratic Equations - 10.3 - Quadratic Formula - Problem Set 10.3: 4

Answer

{$2,6$}

Work Step by Step

Step 1: Comparing $x^{2}-8x+12=0$ to the standard form of a quadratic equation, $ax^{2}+bx+c=0$, we obtain: $a=1$, $b=-8$ and $c=12$ Step 2: The quadratic formula is: $x=\frac{-b \pm \sqrt {b^{2}-4ac}}{2a}$ Step 3: Substituting the values of a,b, and c in the formula, we obtain: $x=\frac{-(-8) \pm \sqrt {(-8)^{2}-4(1)(12)}}{2(1)}$ Step 4: $x=\frac{8 \pm \sqrt {64-48}}{2}$ Step 5: $x=\frac{8 \pm \sqrt {16}}{2}$ Step 6: $x=\frac{8 \pm 4}{2}$ Step 7: $x=\frac{8+4}{2}$ or $x=\frac{8-4}{2}$ Step 8: $x=\frac{12}{2}$ or $x=\frac{4}{2}$ Step 9: $x=6$ or $x=2$ Step 10: Therefore, the solution set is {$2,6$}.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.