Elementary Algebra

Published by Cengage Learning
ISBN 10: 1285194055
ISBN 13: 978-1-28519-405-9

Chapter 10 - Quadratic Equations - 10.3 - Quadratic Formula - Problem Set 10.3: 16

Answer

{$0,-\frac{10}{3}$}

Work Step by Step

Step 1: $3x^{2}=-10x$ can also be written as $3x^{2}+10x+0=0$. Comparing $3x^{2}+10x+0=0$ to the standard form of a quadratic equation $ax^{2}+bx+c=0$, we obtain: $a=3$, $b=10$ and $c=0$ Step 2: The quadratic formula is: $x=\frac{-b \pm \sqrt {b^{2}-4ac}}{2a}$ Step 3: Substituting the values of a, b and c in the formula: $x=\frac{-(10) \pm \sqrt {(10)^{2}-4(3)(0)}}{2(3)}$ Step 4: $x=\frac{-10 \pm \sqrt {100-0}}{6}$ Step 5: $x=\frac{-10 \pm \sqrt {100}}{6}$ Step 6: $x=\frac{-10 \pm 10}{6}$ Step 7: $x=\frac{-10+10}{6}$ or $x=\frac{-10-10}{6}$ Step 8: $x=\frac{0}{6}$ or $x=\frac{-20}{6}$ Step 9: $x=0$ or $x=-\frac{10}{3}$ Step 10: Therefore, the solution set is {$0,-\frac{10}{3}$}.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.