Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 4 - Vector Spaces - 4.5 Linear Dependence and Linear Independence - Problems - Page 296: 17

Answer

See below

Work Step by Step

Let: $A_1=\begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}$ $A_2=\begin{bmatrix} -1 & 2\\ 1 & 3 \end{bmatrix}$ Let $c_1,c_2$ be scalars such that $c_1\begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}+c_2\begin{bmatrix} -1 & 2\\ 1 & 3 \end{bmatrix}=\begin{bmatrix} 0 & 0\\ 0 & 0 \end{bmatrix}\\ \begin{bmatrix} 2c_1 & -c_1\\ 3c_1 & 4c_1 \end{bmatrix}+\begin{bmatrix} -c_2 & 2c_2\\ c_2 & 3c_2 \end{bmatrix}=\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}\\\begin{bmatrix} 2c_1-c_2 & -c_1+2c_2\\ 3c_1+c_2 & 4c_1+3c_2 \end{bmatrix}=\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ We have the system: $2c_1-c_2=0\\ 2c_2-c_1=0\\ 3c_2+c_2=0\\ 4c_1+3c_2=0\\ \rightarrow c_2=2c_1\\ 2c_2-c_1=2(2c_1)-c_2=3c_2=0\rightarrow c_2=0$ We can see that the only solution to the system above is $(0,0)$ Hence $\{ A_1,A_2 \}$ is a linearly dependent set in $M_2(R)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.