Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.4 Summary of Determinants - Problems - Page 241: 9

Answer

$A^{-1}=\begin{bmatrix} \frac{7}{11} &\frac{-5}{11} \\ \frac{-2}{11} & \frac{3}{11} \end{bmatrix}$

Work Step by Step

Given: $A=\begin{bmatrix} 3 & 5 \\ 2 & 7 \end{bmatrix} \rightarrow adj(A)=\begin{bmatrix} 7 & -5 \\ -2 & 3 \end{bmatrix}$ $\det(A)=3.7-2.5=11$ Since $D=11 \ne0$, the matrix is invertible. Use the adjoint method to find $A^{-1}:$ $A^{-1}=\frac{1}{\det(A)}adj(A)$ $A^{-1}=\frac{1}{11}\begin{bmatrix} 7 & -5 \\ -2 & 3 \end{bmatrix}$ $A^{-1}=\begin{bmatrix} \frac{7}{11} &\frac{-5}{11} \\ \frac{-2}{11} & \frac{3}{11} \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.