Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.4 Summary of Determinants - Problems - Page 241: 17

Answer

See below

Work Step by Step

According to Cramer's Rule for a $2\times 2$ system $Ax=b$ where $A=\begin{bmatrix} a_1 &b_1\\a_2&b_2 \end{bmatrix}$ and $b=\begin{bmatrix} c_1\\c_2 \end{bmatrix}$ we have $x_1=\frac{\begin{vmatrix} c_1 &b_1\\c_2&b_2 \end{vmatrix}}{\begin{vmatrix} a_1 &b_1\\a_2&b_2 \end{vmatrix}}=\frac{\begin{vmatrix} e^{-t} &\sin t\\3e^{-t}&-\cos t \end{vmatrix}}{\begin{vmatrix} \cos t &\sin t\\ \sin t& -\cos t \end{vmatrix}}=\frac{\frac{-\cos t}{e^t}-\frac{3\sin t}{e^t}}{-\cos^2(t)-\sin^2 (t)}=\frac{\cos t+3\sin t}{e^t}$ and $x_2=\frac{\begin{vmatrix} a_1 &c_1\\a_2&c_2 \end{vmatrix}}{\begin{vmatrix} a_1 &b_1\\a_2&b_2 \end{vmatrix}}=\frac{\begin{vmatrix} \cos t&e^{-t}\\\sin t& 3e^{-t} \end{vmatrix}}{\begin{vmatrix} \cos t& \sin t\\ \sin t& -\cos t \end{vmatrix}}=\frac{\frac{3\cos t}{e^t}-\frac{\sin t}{e^t}}{-\cos^2 (t)-\sin^2(t)}=\frac{-3\cos t+\sin t}{e^t}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.