Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.4 Summary of Determinants - Problems - Page 241: 20

Answer

See below

Work Step by Step

According to Cramer's Rule for a $3\times 3$ system $Ax=b$ where $A=\begin{bmatrix} a_{11} &a_{12} &... &a_{1n}\\a_{21}& a_{22} & ... &a_{2n}\\a_{n1} &a_{n3}&... & a_{nn} \end{bmatrix}$ and $b=\begin{bmatrix} b_1\\b_2\\... \\b_n \end{bmatrix}$ From the given matrices, we have: $A=\begin{bmatrix} 3.1 & 3.5 & 7.1 \\2.2 & 5.2 & 6.3 \\ 1.4 & 8.1 & 0.9 \end{bmatrix}\\A_1=\begin{bmatrix} 3.6 & 3.5 & 7.1 \\2.5 & 5.2 & 6.3 \\ 9.3 & 8.1 & 0.9 \end{bmatrix}\\ A_2=\begin{bmatrix} 3.1 & 3.6 & 7.1 \\2.2 & 2.5 & 6.3 \\ 1.4 & 9.3 & 0.9 \end{bmatrix}\\ A_3=\begin{bmatrix} 3.1 & 3.5 & 3.6 \\2.2 & 5.2 & 2.5\\ 1.4 & 8.1 & 9.3 \end{bmatrix}$ We have determinants: $\det(A)=-44.911\\ \det(A_1)=-169.251\\ \det(A_2)=-29.614\\ \det(A_3)=65.725$ Hence, we have the solutions: $x_1=\frac{-169.251}{-44.911}=3.769\\ x_2=\frac{-29.614}{-44.911}=0.659\\ x_3=\frac{65.725}{-44.911}=-1.463$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.