Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.3 Cofactor Expansions - Problems - Page 232: 5

Answer

See below

Work Step by Step

We are given: $A=\begin{bmatrix} 1 & 3 & -1 & 2\\3 &4 & 1 &2\\7 & 1 & 4 & 6\\5 & 0&1&2 \end{bmatrix}$ The minors are: $M_{12}=\begin{vmatrix} 3 & 1 &2\\7 & 4 & 6\\5 &1&2 \end{vmatrix}=-4$ $M_{23}=\begin{vmatrix} 1 & 3 & 2\\7 & 1& 6\\5 & 0&2 \end{vmatrix}=40$ $M_{31}=\begin{vmatrix} 3 & -1 & 2\\4 & 1 &2\\ 0&1&2 \end{vmatrix}=16$ $M_{42}=\begin{vmatrix} 1 & -1 & 2\\3 & 1 &2\\7 & 4 & 6 \end{vmatrix}$ The cofactors of the matrix A are: $C_{12}=(−1)^{1+2}.M_{12}=-(-4)=4$ $C_{21}=(−1)^{2+1}.47 $C_{23}=(−1)^{2+3}.M_{23}=-40$ $C_{31}=(−1)^{3+1}.M_{31}=16$ $C_{42}=(−1)^{4+2}.M_{42}=12$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.