Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.3 Cofactor Expansions - Problems - Page 232: 3

Answer

The minors are: $M_{11}=-9$ $M_{12}=7$ $M_{13}=5$ $M_{21}=-7$ $M_{22}=1$ $M_{23}=3$ $M_{31}=-2$ $M_{32}=-2$ $M_{33}=2$ The cofactors of the matrix A are: $C_{11}=-9$ $C_{12}=-7$ $C_{13}=5$ $C_{21}=7$ $C_{22}=1$ $C_{23}=-3$ $C_{31}=-2$ $C_{32}=2$ $C_{33}=0$

Work Step by Step

$A=\begin{bmatrix} 1 & -1 & 2 \\ 3 & 1 & 4 \\ 2 & 1 & 5 \end{bmatrix}$ The minors are: $M_{11}=-9$ $M_{12}=7$ $M_{13}=5$ $M_{21}=-7$ $M_{22}=1$ $M_{23}=3$ $M_{31}=-2$ $M_{32}=-2$ $M_{33}=2$ The cofactors of the matrix A are: $C_{11}=(-1)^{1+1}.4=-9$ $C_{12}=(-1)^{1+2}.2=-7$ $C_{13}=(-1)^{1+3}.2=5$ $C_{21}=(-1)^{2+1}.(-3)=7$ $C_{22}=(-1)^{2+2}.1=1$ $C_{23}=(-1)^{2+3}.1=-3$ $C_{31}=(-1)^{3+1}.1=-2$ $C_{32}=(-1)^{3+2}.1=2$ $C_{33}=(-1)^{3+3}.1=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.