Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.3 Cofactor Expansions - Problems - Page 232: 4

Answer

The minors are: $M_{11}=−5$ $M_{12}=0$ $M_{13}=4$ $M_{21}=47$ $M_{22}=-2$ $M_{23}=-38$ $M_{31}=3$ $M_{32}=0$ $M_{33}=-2$ The cofactors of the matrix A are: $C_{11}=−5$ $C_{12}=0$ $C_{13}=4$ $C_{21}=-47$ $C_{22}=-2$ $C_{23}=38$ $C_{31}=3$ $C_{32}=0$ $C_{33}=-2$

Work Step by Step

We are given: $A=\begin{bmatrix} 2 & 10 & 3\\ 0 & -1 & 0 \\ 4 & 1 & 5 \end{bmatrix}$ The minors are: $M_{11}=−5$ $M_{12}=0$ $M_{13}=4$ $M_{21}=47$ $M_{22}=-2$ $M_{23}=-38$ $M_{31}=3$ $M_{32}=0$ $M_{33}=-2$ The cofactors of the matrix A are: $C_{11}=(−1)^{1+1}.4=−5$ $C_{12}=(−1)^{1+2}.2=0$ $C_{13}=(−1)^{1+3}.2=4$ $C_{21}=(−1)^{2+1}.47 =-47$ $C_{22}=(−1)^{2+2}.(-2)=-2$ $C_{23}=(−1)^{2+3}.(-38)=38$ $C_{31}=(−1)^{3+1}.3=3$ $C_{32}=(−1)^{3+2}.0=0$ $C_{33}=(−1)^{3+3}.(-2)=-2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.