Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.3 Cofactor Expansions - Problems - Page 232: 20

Answer

$\det (A)=-4$

Work Step by Step

We have the cofactor expansion theorem for the 1st row: $\det (A)=a_{11}C_{11}+a_{12}C_{12}+a_{13}C_{13}+a_{14}C_{14}$ with $C_{ij}=(-1)^{i+j}.M_{ij}$ So, we get: $\det (A)=1C_{11}+0C_{12}+(-1)C_{13}+0C_{14}$ $\det (A)=1\begin{vmatrix} 1 & 0 & -1 \\ 0 & -1 & 0 \\ 1 & 0 & 1 \end{vmatrix}+0\begin{vmatrix} 0 & 0 & -1 \\ -1 & -1 & 0 \\ 0 & 0 & 1 \end{vmatrix}+(-1)\begin{vmatrix} 0 & 1 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & 1 \end{vmatrix}+0\begin{vmatrix} 0 & 1 & 0 \\ -1 & 0 & -1 \\ 0 & 1 & 0 \end{vmatrix}$ Plug in the given values: $\det (A)=[1.(-1)+1.(-1)]+0-[-(-1).(1+1)+0$ $\det (A)=-2-2$ $\det (A)=-4$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.