Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 10 - The Laplace Transform and Some Elementary Applications - 10.10 Chapter Review - Additional Problems - Page 719: 38

Answer

$y(t)=\cos 2t+\frac{4}{3}\sin t-\frac{\sin 2t}{6}+\frac{3}{2}\sin (2t-4)$

Work Step by Step

Taking the Laplace transform of both sides of the given differential equation and imposing the initial conditions yields: $[s^2(Y)-sY(0)-y'(0)]+4Y(s)=\frac{4}{s^2+1}+3e^{-2s}\\ s(Y)(s^2+4)=\frac{4}{s^2+1}+3e^{-2s}+s+1$ which implies that: $Y(s)=\frac{4}{(s^2+1)(s^2+4)}+\frac{3e^{-2s}}{s^2+4}+\frac{s+1}{s^2+4}\\ =\frac{s}{s^2+4}+\frac{1}{s^2+4}+\frac{4}{3}(\frac{1}{s^2+1}-\frac{1}{s^2+4})+\frac{3e^{-2s}}{s^2+4}$ Taking the inverse Laplace transform of both sides gives $y(t)=L^{-1}[\frac{s}{s^2+4}+\frac{1}{s^2+4}+\frac{4}{3}(\frac{1}{s^2+1}-\frac{1}{s^2+4})+\frac{3e^{-2s}}{s^2+4}]$ We finally obtain $y(t)=\cos 2t+\frac{4}{3}\sin t-\frac{\sin 2t}{6}+\frac{3}{2}\sin (2t-4)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.