Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 10 - The Laplace Transform and Some Elementary Applications - 10.10 Chapter Review - Additional Problems - Page 719: 24

Answer

$=\frac{1}{4}[1-e^{-2t}(\cos 4t-\frac{3}{2}\sin 4t)]$

Work Step by Step

Given: $F(s)=\frac{2s+5}{s(s^2+4s+20)}$ Using the Convolution Theorem $L^{-1}[F(s)]=L^{-1}[\frac{2s+5}{s(s^2+4s+20)}]\\ =L^{-1}[\frac{1}{4s}].L^{-1}[\frac{4-s}{4(s^2+4s+20)}]\\ =\frac{1}{4}[L^{-1}(\frac{1}{s}) -L^{-1}(\frac{s+2-6}{(s+2)^2+16})]\\ =\frac{1}{4}[1-e^{-2t}L^{-1}(\frac{s-6}{s^2+16})]\\ =\frac{1}{4}[1-e^{-2t}(\cos 4t-\frac{3}{2}\sin 4t)]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.