Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 10 - The Laplace Transform and Some Elementary Applications - 10.10 Chapter Review - Additional Problems - Page 719: 34

Answer

$=\frac{4}{25}e^{4t}+\frac{11}{25}e^{-t}-\frac{4}{5}te^{-t}$

Work Step by Step

Taking the Laplace transform of both sides of the given differential equation and imposing the initial conditions yields: $[s^2(Y)-sY(0)-y'(0)]-3[s(Y)-y(0)]-4Y(s)=\frac{4}{s+1}+e^{-\frac{\pi s}{4}}\\ s(Y)(s^2-3s-4)=\frac{4}{s+1}+s-2$ which implies that: $Y(s)=\frac{4}{(s+1)(s^2-3s-4)}+\frac{s-2}{(s^2-3s-4)(s+1)}\\ =\frac{s-2}{(s-4)(s+1)}+\frac{4}{(s-4)(s+1)^2}\\ =\frac{2}{5(s-4)}+\frac{3}{5(s+1)}+\frac{4}{25(s-4)}-\frac{4}{25(s+1)}-\frac{4}{5(s+1)^2}$ Taking the inverse Laplace transform of both sides gives $y(t)=L^{-1}[\frac{2}{5(s-4)}+\frac{3}{5(s+1)}+\frac{4}{25(s-4)}-\frac{4}{25(s+1)}-\frac{4}{5(s+1)^2}]$ We finally obtain $y(t)=\frac{2}{5}e^{4t}+\frac{3}{5}e^{-t}+\frac{4}{25}e^{4t}-\frac{4}{25}e^{-t}-\frac{4}{5}te^{-t}\\ =\frac{4}{25}e^{4t}+\frac{11}{25}e^{-t}-\frac{4}{5}te^{-t}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.